The intracellular enzyme cardiac troponin I (cTnI) has been shown to increase after prolonged endurance exercise, while athletes do not demonstrate clinical signs of cardiac damage or an acute myocardial infarction [1]. To obtain information for the clinical interpretation of cTnI tests in athletes, several studies identified predictors of post-exercise cTnI levels. Based on a review of the literature, Shave and colleagues proposed that exercise intensity and exercise duration primarily influence post-exercise cTnI levels [1]. Also, others suggested that a threshold in exercise intensity may be needed for substantial cTnI release [2]. An important limitation of this previous work was the small variation in exercise intensity between subjects due to inclusion of an exercise modus. Therefore, we compared the exercise-induced cTnI levels between marathon runners and walkers that covered a similar distance. We hypothesized that the magnitude of cTnI responses were importantly related to the level of exercise intensity.

Sample size calculations (SPSS SamplePower v3, IBM, USA) revealed that 23 subjects per group were necessary to detect differences between runners and walkers (power 80%, α = 0.05, correction for 5% drop-outs). Twelve men and eleven women participated in the Eindhoven Marathon (42.2 km), while a group of 23 sex-, age- and BMI-matched subjects participated in the Nijmegen Marches (40.6 km). A venous blood sample was taken for cTnI analysis (Centaur TnI-Ultra, Siemens, Breda, the Netherlands) at baseline and within 15 min post-exercise. Assay imprecision was 5.3% at 0.08 μg/L and 3.0% at 27.2 μg/L. A cTnI-value of 0.04 μg/L is the clinical cut-off value for myocardial infarction. Heart rate was measured continuously during exercise using a 2-channel ECG chest band system (Polar, Kempele, Finland). Exercise intensity was calculated by dividing the mean heart rate during exercise by the maximal predicted heart rate according to the formula of Tanaka (208 − 0.7 × age) [3]. Before participation oral and written information was given, after which all participants provided written informed consent. The Medical Ethical Committee of the Radboud University Nijmegen Medical Centre approved the study which was conducted in line with the Declaration of Helsinki. All cTnI values were log-transformed for statistical analysis. Changes over time were assessed using repeated measures ANOVA. A chi-square test was used to compare the number of subjects above the clinical threshold between runners and walkers. Data was reported as the relative risk score (RR) with 95% confidence intervals (CI). The relation between cTnI release and exercise intensity was determined using linear regression modeling.

Subject characteristics were comparable between runners (47 ± 12 year, 24.0 ± 2.2 kg/m²) and walkers (50 ± 14 year, 24.3 ± 2.6 kg/m²). Both, runners (6 ± 2 h/week) and walkers (4 ± 2 h/week) trained prior to the study on a regular basis (p = 0.039). Baseline cTnI levels did not differ (p = 0.46) in runners (0.017 ± 0.014 μg/L) and walkers (0.015 ± 0.015 μg/L). All runners (245 ± 29 min) and walkers (512 ± 52 min) successfully completed the exercise bout without clinical signs or symptoms of an acute coronary syndrome. Exercise intensity varied between 54 and 99% of the maximum predicted heart rate in the total cohort, but higher values were obtained in runners compared with walkers (92 ± 5% versus 70 ± 9%, p < 0.001). The exercise-induced increase in cTnI was significantly higher in runners compared to walkers (Fig. 1a). Also, runners demonstrated a higher incidence of cTnI levels above the clinical cut-off value compared to walkers (83 versus 17%, RR = 4.7, CI = 1.9–11.8). Exercise intensity demonstrated a strong and positive linear relationship with cTnI levels (R = 0.752, p < 0.001, Fig. 1b), which was unaffected when the variable ‘training hours’ (p = 0.203) was added to the regression model. Also sex did not impact the magnitude of exercise-induced cTnI elevations (2-way RM-ANOVA exercise + sex: p = 0.37), while men (R = 0.77, p < 0.001) and women (R = 0.75, p < 0.001).
the elevated levels of cTnI are more likely to result from 1) increased flu-
re

tude of cTnI release, and the fact that cTnI levels also rise at low-to-
[5]. Given the strong relation between exercise intensity and the magni-
fluence is currently unknown, but several pathways have been proposed
[5]. Given the strong relation between exercise intensity and the magni-
c TnI levels, are more likely to result (1) increased myocyte turnover, 2) increased cellular release of proteolytic troponin degradation products, 3) increased cellular wall permeability, and/or 4) formation and release of membranous blebs.

Previous studies suggested a potential impact of older age, little running experience, and the presence of cardiovascular disease to relate to higher post-exercise cTnI levels [6–9]. In our study, we found that 56% of the exercise-induced cTnI levels can be explained by exercise intensity. Potential interactions between previously identified factors (like age, fitness level and cardiovascular health) and exercise intensity may have contributed to these findings. Based on the importance of exercise intensity to mediate cTnI-release after exercise, future studies should correct for exercise intensity when examining factors contributing to an increased exercise-induced troponin release.

In conclusion, we have demonstrated that exercise consistently causes an increase in cTnI over a large range of exercise intensities. Moreover, the magnitude of cTnI release is strongly related to exercise intensity, and post-exercise cTnI levels are higher in runners compared to walkers. Accordingly, clinical cut-off levels are more frequently exceeded at high-intensity exercise. The authors of this manuscript have certified that they comply with the Principles of Ethical Publishing in the International Journal of Cardiology.

Disclosure statement funding

This study was funded by a research grant from Sports and Technology (Eindhoven, The Netherlands). T.M.H.E is financially supported by the Netherlands Organization for Scientific Research (Rubicon Grant 825.12.016), M.H.O.S was supported by the Dutch Heart Foundation (2006B235), and D.H.J.T received an E. Dekker stipend of the Dutch Heart Foundation (2009F064).

Acknowledgments

We thank all the volunteers from the Department of Physiology for the assistance with data collection. We thank Siemens Healthcare Diagnostics for the provision of the cardiac troponin analysis kits.

References